



Partnership Instrument)



# A tool to evaluate the energy consumption of entire housing areas and their potentials towards better energy efficiency

Hans Jörg Duvigneau
Centre of Competence for Major Housing Estates, Berlin, Germany

2 December 2011 - Final Conference "Energy Efficiency and Urban Future"





# A tool to calculate the energy consumption and the energy saving potential of buildings

- This simple tool in the form of a matrix has been particularly developed during the URB-Energy project for the Berlin target area (Frankfurter Allee Süd and Kaskelkietz) by Henryk Hönow and his colleagues at BBP Bauconsulting, Berlin.
- For more details, look at the proceedings of the URB-Energy Conference at Berlin, Oct. 2010.
- Containing elements of the BEEN Manual, Nov.2007 (<u>www.been-online.net</u>), this tool has been refined by the BBP engineers for the purpose to evaluate energy saving potentials of entire housing areas in our cities.







#### Main elements of the matrix

#### • From top to bottom:

- The types of buildings in a given urban area with their characteristic thermal features;
- The types of heating systems used in the area's buildings
  - Decentralized heating by individual room or flat heaters, stoves
  - Central heating for single multi-storey buildings
  - District heating for all (or most of) buildings of an urban area
- The energy sources used for heating / heat production
  - Fossil fuel, like coal, lignite, oil, natural gas etc.
  - Electrical energy
  - Renewable energy, like wood pellets, biomass, solar heat
  - Employed energy saving technologies for heat production, like
     CHP Cogeneration of heat and power, others







#### Main elements of the matrix

#### • From left to right:

- Building type
- Roomspace (m²) in flat or building to be heated
- Employed heat technology and energy sources
- Energy demand (kWh/²a) according to the specific type of building and to the characteristics of heating technology
- Total demand (Energy demand x floorspace, MWh/a)
- Energy expenditure factor
- Final energy demand (MWh/a)
- Primary energy factor
- Primary energy demand (MWh/a)







# Calculation of CO2-Emission (kg / MWh), according to the employed energy sources

| <b>Energy source (type of fuel)</b>        | <b>Energy factor</b> | Specific CO <sup>2</sup> emission |
|--------------------------------------------|----------------------|-----------------------------------|
| <ul><li>Lignite / Braunkohle</li></ul>     | 1.200                | 350,0                             |
| <ul><li>Light fuel oil</li></ul>           | 1.100                | 266,0                             |
| <ul><li>Natural gas</li></ul>              | 1.100                | 211,0                             |
| <ul> <li>District heating 1990</li> </ul>  | 0.700                | 300,0                             |
| <ul> <li>District heating 2010</li> </ul>  | 0.567                | 149,0                             |
| <ul> <li>Electrical energy 1990</li> </ul> | 2.700                | 728,0                             |
| <ul> <li>Electrical energy 2010</li> </ul> | 2.600                | 575,0                             |
| <ul> <li>CHP Cogeneration</li> </ul>       |                      |                                   |
| <b>Heat &amp; Power Block</b>              | 0.800                | 54,2                              |
| <ul> <li>Wood pellets, biomass</li> </ul>  | 0.200                | 58,1                              |
| <ul><li>Solar heating</li></ul>            | 0.000                | 0.0                               |







# Calculation of energy consumption and energy saving potentials of prefab housing areas

- Calculation system is just more simple because of reduced number of elements to be considered:
  - None or few old buildings with special features
  - Little number of prefabricated building types with wellknown energy-related performances
  - Generally, district heating has been installed in the area
- Taking into account:
  - The state of the heat production plant
  - The type of fuel and technology for heat production used
  - The state of the heat distribution net
  - Avoidable losses of heat energy in the distribution net
  - The state of the secondary stations in the buildings













### Description Kaskelkiez (KAS) 1991/92

- Buildings mainly masonry structure (brick walls, construction period 1875-1920), lower part for trade and social institutions Industry / business in western part of area (e.g. Knorr Co.)
- Block development with war-related gaps
- Total living / usable area: ca. 187.450 m²

Average of overall specific primary energy demand:













### KAS 2010 - Energy efficiency / CO<sub>2</sub>-emission



- realised through
  - renovation on different levels
  - new heating systems (central), mostly based on natural gas
  - replacement of coal as primary energy source







Description Frankf.-Allee-Süd 1991/92 social

 Mainly residential area (prefabricated building type), social institutions e.g. schools, day-carefacilities as well as industry / trade / business

Specific primary energy demand 125 kWh/m²a















### FAS 2010 – Energy efficiency / CO<sub>2</sub>-emission

-40 % 78 kWh/m²a

spec. heating energy demand

-41 % 103 kWh/m²a

spec. final energy demand

-52 % 60 kWh/m²a

spec. primary energy demand

-70 % 16 kg/m²a

CO2 - emission

- realised through
  - complete reconstruction
  - renewal of building equipment (heating / hot water / ventilation)
  - district heating generation with combined heat and power process (CHP)







#### **Perspectives**

| Achieved energy efficiency status (heating + warm water) |              |                |  |
|----------------------------------------------------------|--------------|----------------|--|
|                                                          | Final energy | Primary energy |  |
| Kaskelkiez                                               | 184 kWh/m²a  | 205 kWh/m²a    |  |
| Frankfurter<br>Allee-Süd                                 | 103 kWh/m²a  | 60 kWh/m²a     |  |

#### **Potential for further actions:**

#### Kaskelkiez

- more insulation measures
- more efficient use of primary energy

#### Frankfurter Allee-Süd

- classical EEM-potential implemented
- long term objectives: district heating shift to renewable energies







# A simple way to evaluate energy saving potentials of whole urban areas

- Seizing the groundspace of buildings of the area by using aerial views by Google Earth or others
- Multiplying the groundspace with the number of storeys and adequate factors to get the floorspace.
- Evaluating the heat energy demand by using data of the building type's specific heat requirements.
- With simple operations like this, engineers would be able to evaluate the actual energy consumption, possible savings by step-wise realised improvements and to survey the progress towards more energy efficiency.







## Just to remind you:

- The annual average demand of energy for heating and hot-water supply differs, depending of the type of housing (data from the German housing sector, 2007):
  - Old buildings (construction until 1920)
     >300 kWh/m²
  - Post-war buildings (1950-1980)
     (incl. prefab. housing buildings 1960-90)
  - Overall average of the total housing stock 185 220 kWh/m²
- Comparative data concerning the housing stock in the Baltic Sea Region are fairly similar.
- Agreed objectives of all EU-member States: reduction of energy consumption and CO2 emission by 20% until 2020







## Thank you for your attention!

