Urb. Energy builds upon BEEN

Urb.Energy Kick-Off-Conference 15-16 June 2009

Senatsverwaltung für Stadtentwicklung Berlin Barbara Berninger, Peter Wollschläger

Subject of BEEN: The Traditional Package of Energy-Saving Measures

Measures		Function and purpose of measures	
	gable		
atior	longitudinal walls	Reduction of heat loss	
Insulation	top floor ceiling		
	cellar ceiling		
H	heating pipes	Avoidance of unnecessary heat loss	
New windows		Reduction of heat loss via window panes and frames	
		Avoidance of unnecessary heat loss (due to unwanted draughts of rickety windows	
Heating system		To enable the realisation of energy savings	

The Structure of the BEEN Results

Pilot Project in Beijing (GTZ China)

Focus of Urb. Energy

Focus of BEEN:

- What is the optimal package of energy-saving measures for prefabricated housing?
- How can be achieved, that the condominium ownerships (installed after privatisation) become able to implement these measures?

Focus of Urb.Energy:

- Upgrading of the residential environment and infrastructure
- Integrated concepts for holistic rehabilitation of residential areas

Questions regarding energy efficiency:

- How to make district heating competitive?
- How to reduce primary energy and CO₂-emissions?
- How to use renewable energies?

Savings Potential in terms of the Final Energy Need of Dwelling

Costs of energy-saving measures per flat

Achievable Energy Savings: 50 %

i.e. per flat (54 m²) annually:

- reduction of heating need: 4.200 kWh
- saving primary energy:500 to 700 litres oil(or equivalent gas, coal)
- reduction CO₂:1 to 1,4 t

Berlins Climate Objectives up to 2020

- Target: CO₂- Reduction (compared with 1990) 40 %
 - 25% reduction achieved (2005) (1990: 29 Mio t; 2005: 22 Mio t)
 - To do: Further reduction of 4,3 Mio t CO₂ (15%) is needed
 (aim 2020: 17,6 Mio t = 5,2 t per inhabitant)
- The residential housing stock can and must deliver an above average contribution
- CO₂-Emissions of the housing stock 2005:

Berlin's Own Housing Stock sets a Good Example

Heat energy consumption of Berlin's communal flats				Berlin's
		Sum	thereof HOWOGE	Average
	number of flats	267.824	48.433	1.840.000
	living space	16.746.648	2.970.212	128.248.000
	m² per flat	62,53	61,33	69,70
Final energy consumption	in MWh	1.912.809	229.732	20.519.680
	kWh per flat	7.142	4.743	11.152
	kWh/m²a	114,22	77,35	160,00
	'	100 %	68 %	140 %
Primary energy consumption	in MWh	1.715.185	160.518	
	kWh per flat	6.404	3.314	
	kWh/m²a	102,42	54,04	135,00
		100 %	53 %	
CO2-emissions	in t/a	377.896	37.750	4.924.723
tons	per flat annually	1.411	0,78	2,68
	kg/m²a	22,57	12,71	38,40
kg CO2 per kWh final energy consumption		0,198	0,164	0,240
		100 %	56 %	

CO2-Emissions of Different Energy Supply

Specific values of energy supply and CO2 -emissons				
Energy supply	Specific CO ₂ - emissions (kg CO2 per kWh final energy)	Primary energy coefficient		
Electric current	0,58 bis 0,70	2,70		
Lignite	0,410	1,20		
Hart coal	0,350	1,20		
Oil	0,266	1,10		
Natural gas	0,211	1,10		
Timber (peletts)	-	0,20		
Solar (thermal panels))	-	-		
District heating				
Vattenfall	0,149	0,567		
FHW MV	0,217	1,300		
District heating Neukölln	0,220	0,940		
ВТВ	0,046	0,387		

Berlin's Contribution for Urb. Energy

Case study about the concrete development of quarters

- in the urban district Berlin- Lichtenberg
- with the housing stock of the housing company HOWOGE

...composed of 4 parts

- Compilation of the relevant elements of the applied integrated urban development concept
- Inventory (state 1990), appraisal and detected deficits
- Planned concepts and their down-to-earth implementation
- Achieved state (2009), open issues and plans for the further development

What Renovation Investments can be financed?

		EST LT LV PL	D (East) in the 1990th
SL	Term in years	8 to 12 years	20 to 25 years
Loan	Interest	4,5 to 7 %	6 to 8 %
00	Annuity (Σ redemption and interest)	15 %	8,5 %
Financing scope		35,00€	145,00€
Achievable Ioan		2.625,00€	20.470,59 €
By comparison: costs of energy-saving measures		ca. 5.000 €	ca. 8.000 €

Decision Rules for Condominium Ownerships

Measures	EST LT LV PL		D
Necessary repairs (M1)	Owner vote not required (compulsory task of the housing manager)		
Large-scale maintenance			
General modernisation	Majority vote (50% + 1)		75% after
Energy-saving measures			01 July 2007
Structural changes		Unanimous agreement	
Required building work	as M1		

BEEN Recommendations Put into Reality

BEEN- Recommendation 1:

• The scope of Art. 6 of the EPBD should be extended to apply to smaller residential buildings (not only to those exceeding 1,000 m² of living space)

Recommendation 1b:

 National energy requirements for window replacement should be simple and practice-orientated and avoid abstract references to complex regulations for new buildings. There is no sensible reason to allow the installation of new windows with U-values higher than 1.3 W/m²K.

Insulation Layer Thickness

Ranking of Energy-saving Measures for Renovation Step-by-step

Measures	Amortisation period [years]	Ranking score
Insulation top floor ceiling	6	
Insulation heating pipes	6	1
Insulation gable walls	12	3
New windows	13	4
Insulation longitudinal walls	14	5
Insulation cellar ceiling	25	6

BEEN Recommendation for State Support Programmes

Continuation of the German KfW Loan Support Programmes

Germany's Support Programme "KfW- CO2- Gebäudesanierungsprogramm" in 2007 und 2008				
	Granted loan volume with reduced interest rates *)	Number of flats supported	Average loan per flat	
2007	1.861 Mio €	83.345	22.324 €	
2008	2.841 Mio €	122.016	23.284 €	

^{*)} Current conditions for energy efficient measures: Interest rates 2,55 % to 2,80 %; loan duration 20 or 30 years. Premature repayment possible without prepayment penalties.

BEEN Recommendation for State Support Programmes

EU Structure Funds Periode 2007 to 2013

EU Structure Fonds useable for refinancing of national support programmes

...aiming energy efficiency of the residentail building stock.

BEEN Best-Practice Projekt Paldiski Road 171, Tallinn (Estland)

